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The effects of terrain shape on nonlinear 
hydrostatic mountain waves 
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(Received 19 September 1977 and in revised form 3 January 1979) 

Solutions to  Long’s equation for a stably stratified incompressible fluid traversing 
a mountain range are obtained for various terrain shapes and amplitudes when the 
horizontal scale is large compared to  the vertical wavelength. Nonlinear lower and 
upper (radiative) boundary conditions are utilized and found to  have a strong influence 
on the wave structure a t  large amplitudes. The results for symmetric and asymmetric 
mountain profiles reveal t’hat the wave amplitude and wave drag are significantly 
enhanced for mountains with gentle windward and steep leeward slopes. These results 
confirm and explain those obtained by Raymond (1973) using a different solution 
method. Several results obtained by Smith (1977)  from perturbation analysis are also 
confirmed and extended to  large amplitudes. The methods are also applied to investi- 
gate the nonlinear nature of the singularity predicted by linear theory for flow over a 
step. 

1. Introduction 
We investigate and describe the structure of finite amplitude mountain waves 

under varying conditions of terrain height and shape. For this purpose we derive and 
demonstrate a rather simple technique for obtaining solutions for the two-dimensional 
flow of stratified fluid over large amplitude terrain. Although the technique is 
apparently restricted to  idealized flow conditions, the results appear to aid in nnder- 
standing the nonlinear structure of real mountain waves and downslope winds. 

The work of Long (1953, 1955) has shown that the steady state nonlinear equations 
of motion, continuity, and thermodynamics for either a gas or liquid can be reduced to 
a second-order quasi-linear Helmholtz equation (Long’s equation), provided that 
static stability is always positive. Further, the Helmholtz equation becomes com- 
pletely linear for a Boussinesq fluid if the static stability and mean flow velocity are 
constant with height. While these are strong restrictions they do not necessarily bar 
useful theoretical investigations. One obstacle to  wider application of Long’s analysis 
has been the difficulty of obtaining solutions which fit the correct nonlinear lower 
boundary conditions. Only a few investigators, most notably Miles and Huppert 
(Miles & Huppert 1968, 1969; Miles 1968, 1969; Huppert & Miles 1969), have devel- 
oped analytic solutions which satisfy this condition, and then only for rather re- 
stricted terrain conditions. Others, such as Raymond ( 1972), have numerically coupled 
solutions of Long’s equation to the lower boundary using iterative procedures. 

An alternative route, direct numerical simulation, can be very effective and is 
essential for coping with typically complex wind and temperature profiles and terrain 

0022-1 120/79/4365-7860 $02.00 Q 1979 Cambridge University Press 

9 



242 D. K .  Lilly and J .  B. Klemp 

shapes. It is, however, sensitive to various physical and numerical instabilities and to 
the numerical damping often used to control them (Klemp & Lilly 1978). In  addition, 
analytic or simpler numerical solutions still seem to be more valuable for conceptual 
understanding. 

The alternative to be presented here is to form a linear solution which fits the correct 
lower boundary condition, in effect by writing i t  in terms of co-ordinate surfaces 
parallel to the mountain contour. I n  general, co-ordinate transformations either do not 
preserve the linearity of the Helmholtz equation or leave i t  linear but with continu- 
ously variable coefficients, so that solutions must still be obtained numerically. In  
this case no such problems arise in the differential equations as long as interest is 
confined to hydrostatic flow. This restriction is appropriate if the horizontal terrain 
scales are large compared to the vertical wavelength, which is typically of order 
10-20 km in the earth’s atmosphere. 

For the upper boundary a radiation condition is specified which permits only the 
upward propagation of wave energy. This condition is applied to  nonlinear waves 
with some uncertainty since partial reflexions may occur through the interaction and 
breakdown of upward propagating modes. Nevertheless, a radiative upper boundary 
condition appears to provide the best available representation of hydrostatic moun- 
tain waves unless one is prepared to consider the complex processes of wave dissi- 
pation. We have implemented the radiation condition using a generalization of the 
technique proposed for linear waves by Drazin & Su (1975). For the nonlinear case it 
requires the numerical solution of a one-dimensional integral equation. For practical 
purposes this method may be considered as an alternative to those developed by 
Huppert & Miles (1969) for generalized topography and by Raymond. Although we 
suspect that  it may be more efficient than either of those in converging to a numerical 
result, it is only applicable to hydrostatic flow. It may also have some advantages of 
conceptual simplicity, notably in the evaluation of the momentum flux integral. 

Recently Smith ( 1  977) has treated some aspects of the same problem considered 
here, with emphasis on the steepening of streamlines by linear and nonlinear processes. 
Smith obtained nonlinear solutions through a series expansion technique, with many 
of his results based on first-order nonlinear correction terms. There are several inter- 
esting points of comparison with the present results, though our principal emphasis 
will be on the effects of variable mountain shapes. 

The most controversial aspect of the use of Long’s equation is the question of 
whether its solutions are correct steady-state limits of relevant initial value problems. 
McIntyre (1972) has found that upstream influence, defined as a change in the mean 
flow profile extending indefinitely far upstream of the mountain, will occur for all 
topographic forcing conditions under an upper lid. From results of numerical simu- 
lation studies (Klemp & Lilly 1978)) we have found that blocking, a form of upstream 
influence, typically occurs after the flow conditions have been adjusted to  remove 
shearing instability, and also at levels below mountain top where the Froude number 
is small. None of these conditions occur in the solutions to be shown, except that a t  
sufficiently large wave amplitudes convective instability may be present. A feature 
similar to upstream influence does occur over periodic mountains, however. McIntyre 
also noted that resonant interaction instability should occur in horizontally periodic 
waves, which we have also observed in numerical simulations. Thus except for the 
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periodic mountain case we believe, and will show evidence to document, that our 
solutions are generally the correct steady-state limits to relevant initial value 
problems. 

2. Equations and method of solution 
The two dimensional (x, z )  inviscid Boussinesq equation of horizontal motion, the 

hydrostatic approximation, the incompressible continuity equation, and the equation 
for conservation of mass may be written conventionally as: 

a q a t  + u au/ax + w au laz  +pol appx = 0, (1) 

appt + ap/ax + w appz = 0, (4) 
where u and w are horizontal and vertical velocity components, p is pressure and p is 
density, with po a reference mean density, assumed for convenience to be that of the 
surface streamline. Long (1953) showed that under conditions of constant mean wind 
velocity and static stability, solutions of the following linear differential equation are 
also steady-state solutions of (1)-(4): 

( 5 )  
where U is the mean wind velocit,y and N 2  = -gp'pOldp/&, the BruntVaisala fre- 
quency, both measured in the undisturbed (presumably far upstream) flow. The 
dependent variable, S(x, z ) ,  is the vertical displacement of an air parcel from its undis- 
turbed equilibrium height, Z ,  i.e. 6 = 2 - 2 .  The density and velocity fields are related 
to S by 

SO that the streamlines are lines of constant Z, along which density is also constant. 

( a z p  + N2/ u2) s = 0, 

/I = p0( 1 - A%/g), u = U( 1 - aS/;iz), w = U 8 8 / a ~ ,  (8) 

The correct lower boundary condition is that 

W , h )  = h(x), ( 7 )  
where his the terrain height. Solutions of ( 5 )  which also satisfy ( 7 )  may be written in the 
real and complex forms 

6(x, z )  = h cos [N(z  - h ) / U ]  +fsin [N(z  - h ) / U ]  = Re [Hexp ( - iN(z  - h ) / U ) ] ,  

( 8 )  
where fI = h + if. The real function f ( x )  must be determined from an upper boundary 
condition. 

The radiation condition is usually and appropriately applied in linear theory as the 
upper boundary condition for hydrostatic waves. It leads to solutions for which each 
horizontal wavenumber component has an upward group velocity, which is the 
apparent velocity of a 'wave packet ' or beat pattern produced by several components 
of nearly identical wavenumber. In  addition it is equivalent to the viscous solution 
which diminishes exponentially with height in the limit of vanishing viscosity and also 
to the steady-state limit of the evolving time-dependent solution which starts from 
rest. The radiation condition can be applied to  solutions of Long's equation, because 
of its linear form and because horizontally propagating solutions of (1)-(4) can be 
obtained as solutions of ( 5 )  with U replaced by U - w l k ,  where o is a temporal 
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frequency. For each horizontal wavenumber k and vertical wavenumber I, the wave 
dispersion equation may be written as 

( w -  Uk)2 = k2N2/12. (9) 

The vertical group velocity, cg,, is then obtained by differentiation with respect to I ,  
i.e. 

where 

Thus for the solution with w = 0 the group velocity is upward if k and 1 have the same 
sign. 

The application of this condition to a solution fitting nonlinear lower boundary 
conditions is now derived, essentially following and extending the treatment of the 
linear problem by Drazin & Xu (1975); see also Miles & Huppert (1969, $5) .  The sol- 
ution from equation (8) ,  evaluated at the level z = 0 (or z = 2nnU/N, with n an integer) 

cgz = aw/a1 = (kU - w ) / l ,  

1 = 2 S/( u - w/lc). 

(10) 

where 8 (k, z )  is the Fourier integral transform of the displacement height, i.e. 

8(k, z )  = Sm Re [Hexp ( - i ~ ( z  - ~ ) / u ) I  exp ( - i kx )  dx. (12) 2n --m 

The radiation condition applied to any level requires that k / l  be positive. Thus from 
(8) evaluated at z = 0 the term &Hexp(iNh/U) must be the result of the Fourier 
integral of $(k ,  0) over only positive k ,  i.e. 

0 
H exp ( i N h / U )  = 2 s  $ ( k ,  0) exp ( ikx )  d k ;  

--m 

Drazin & Su showed that for hydrostatic flow the Fourier integrations in (13) can be 
carried out without evaluation of 8(k ,  0). Upon substituting (12) into (13) and reversing 
the order of integration, the key problem becomes the evaluation of 

exp [ ik (x  - x‘)] d k .  Sr, 
But this is given by 

exp [ i k ( x  - x’)] dlc = nA(x - x’) + i/(x’ - x), Sr, 
where A is the Dirac delta function. This leads to the result 

f ( x )  cos [Nh(x) /U]  + h(x) sin [Nh(x) /U]  

-m h(x’) cos [Nlz(x’)/U] -f(~’) sin [Nh(x’)/U] 
X I - x  

If h and f are analytic functions of a complex argument along its real axis, then the 
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properties of Hilbert transforms are such that we may also write an inverse expression 
of the form 

h(x) cos [h’h(x)/U] - f(x) sin [Nh(x)/U] 
03 f(x’) cos [Nh(x’)/U] + h(x‘) sin [Arh(x’)/U] dx,. 

XI-x 

By algebraic manipulation, expressions for h(x) and f(x) are obtained in the following 
forms, where we now for convenience redefine 1 as the Scorer parameter N / U ,  i.e. the 
positive root of (10) for w = 0. 

h(x’) sin ( I  [hfz’) - h,(x)]) +f(x’) cos ( I  [hfx’) - ?z(x)]) ”) (15) 

h(x) = -- 
n - m  XI-x 

m h ( x ’ )  cos (1 [h(x’) - h(x)]} - f(x’) sin(Z [h(x’) - h(x)]) 
dx’, 

‘1 
f(x) = ‘1 

n -m xl-x 

or, in more compact notation, 
i 1 H(x’) exp [iZh(x‘)] 
n --m XI-x H ( x )  exp [iZh(x)] = - ax‘ 

For each of the above integrals ha\-ing integrsnds singular at the point x’ = x, the 
Cauchy principal value is used. The linear forms derived by Drazin & Su are recovered 
by assuming that the Froude number, Zh, is everywhere negligibly small, so that in 
(15) h and f are essentially Hilbert transforms of each other with alternating signs. If 
the group velocity were assumed to be downward instead of upward, the signs of the 
right-hand sides of (15) and (16) would be reversed. 

The above expressions are obviously more cumbersome, both to write and solve, 
than those for the linear boundary condition, since the unknown function f appears 
inside the integral. We therefore solve the second of (15) by a numerical iterative 
procedure. Recognizing the singularity in the first term of the integrand, we rewrite 
that  term as 

dX’, h(x’) { 1 - cos 1 [h(x’) - h(x)l} 
XI-x 

where fL is identical to the linearized f ,  the Hilbcrt transform of h, and is typically 
evaluated by analytic techniques. The remaining integral and the second part of the 
original integral are each now regular a t  x’ = x. We evaluate them by straightforward 
numerical quadrature, except that  for some mountain profiles x and x’ are transformed 
into different variables so that the step length can be conveniently increased for 
large x. The initial guess for f (x’) is fL, and integration off proceeds until convergence 
occurs. The adequacy of the technique is verified by then calculating ?z(x) from the 
first part of equation (15), which is required to agree with the specified ?L to  about 
0- 1 yo in most cases. 

I n  considering the stability of these solutions, the behaviour of the Richardson 
number is of some interest. Using (6) the Richardson number may be defined as 
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Application of (8) yields 
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where tanlh = f /h .  (18) 
1 + l(h2 +f2)!i sin [l(z - h - A) ]  

P(h2 +f2) { 1 - sin2 [Z(z - h - A ) ] }  ’ Ri = 

By differentiating (18) with respect to the argument of the sine function, the minimum 
value of the Richardson number is found to be Ri,,, = 4 { 1 - [ 1 - 12(h2 +f2)]4}, which is 
greater than or equal to 4 for Z2(h2 +f2)  < 1. When Z2(h2 + f 2, > 1,  however, overturning 
occurs and the Richardson number takes all positive and negative values for the 
argument of the sine function in (18) ranging between f in. Since Ri = is the upper 
limit for shearing instability, it  is evident that shearing and buoyant instability 
develop simultaneously for this simple kind of mountain wave flow. This pecularity 
has been noted before in linear theory (Hodges 1967), for which the only difference 
from the above analysis is that the argument of the sine function in (18) is Z(z - A) .  It 
does not hold, however, in the case of waves propagating in an atmosphere with vertical 
structure in the wind and stability fields, as for example in the multiple-layered sol- 
utions considered by Klemp & Lilly (1975). When partial reflexion occurs due to a 
rapid change in N or U ,  the combined incident and reflected modes may decrease the 
local static stability but increase the local shear, so that unstable Richardson numbers 
may occur before the overturning point. 

3. Results for various mountain shapes 
We now show the solutions €or three idealized but representative terrain profiles and 

compare them with solutions obtained from the use of the linear boundary conditions, 
and in one case with nonlinear numerical simulations. Evaluations of wave drag as a 
function of mountain height and shape will then be presented and discussed. The three 
terrain profiles considered in this section are sinusoidal, bell-shaped and asymmetric. 

The first example chosen for illustration is the continuously sinusoidal terrain 
described by 

h ( x )  = ~ A C O S ~ ~  (19) 

where k is a positive wavenumber, arbitrary except that k2 < l2  if the hydrostatic 
equations are to remain valid. The linear approximation to f(x) is the sine function, i.e. 

The nonlinear solutions for f(x) are shown for various mountain heights on figure I ,  
normalized by division by A,  the peak-to-trough mountain amplitude, and labelled 
by the magnitude of 1A. The curve for ZA = 0 on figure 1 is identical to f L .  As the 
mountain amplitude increases, - f / A  (and the scaled surface wind speed) tends to 
increase everywhere, but most strongly on the downslope side of the sinusoidal ridges. 

We note that the nonlinear solutions for f(x) in figure 1 differ from the linear sol- 
utions mainly by an additive constant. This difference implies that the mean flow has 
a component periodically oscillating in height. This is similar to the upstream influence 
predicted by McIntyre (1972) to occur with waves which are made periodic by energy 
trappir.?. Initial value solutions obtained by numerical simulation compare well with 
the above results. After a period of time which apparently depends on the amplitude, 
however, a series of short propagating but unstable waves develop. Although these 
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FIGURE 1. The function f ( x ) / A ,  as determined from equation (15), for mountain amplitudes 
ranging from 0 to &4 = 1.6 U I N  in steps of 0.4 U I N  for the sinusoidal mountain whose profile is 
h (x) = 3A cos kx. Tho surface velocity perturbation equals - Nf. 

wa\ es ultimately destroy the solution by numerical instability, their initial develop- 
ment is apparently controlled by resonant interaction instability. These results are 
discussed in more detail by Klemp & Lilly (1  978). 

On figure 2 we show the streamline pattern corresponding to the values of h and f a t  
the overturning amplitude, IA = 1-34. The problem of determination of these stream- 
lines from the displacement height solutions was discussed by Smith. The undisturbed 
height of a particular streamline, Z, can be calculated a t  each location and the stream- 
lines drawn by objective analysis techniques. For greater accuracy, however, we prefer 
to find the displacement height as a function of x and Z and then plot streamline 
heights as z = Z + S(x, z ) .  The solution is obtained iteratively by setting the function 
equal to  zero 

through repeated application of the extrapolation formula 

Fn = Z, - Z - S ( X ,  2,) (21) 

zn+l= 2%- (zn-zn-1) C / ( F n - E - I ) *  (22) 

The function z,,(x, Z )  converges to z as F,, + 0 and is the height of a streamline whose 
undisturbed height is Z .  A slightly more elaborate procedure is required when z is 
multiple-valued, i.e. when the streamline amplitude has exceeded the overturning 
point. For all of the flow fields displayed in this section, the streamlines are plotted in 
the range 0 < l Z  < 3n. 

Exaniination of figure 2 reveals features of nonlinear mountain waves familiar from 
previous research results, such as the flow over a semi-elliptieal obstacle presented by 
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FIGURE 2. Streamlines for the nonlinear solution over a sinusoidal mountain of amplitude 
A = 1.34 U / N .  A vertical streamline exists at  the point marked x . 

Miles & Huppert (1969). The turnover point, where u = 0 = +/ax, first occurs a t  
kx = in, ZZ = n, and recurs periodically, thus confirming the periodic steepening effect 
discussed by Smith. If the solution for f (x) from the second of equations (16) is ex- 
panded in a power series in ZA, the result to second order may be written as 

f = iA(sinkx-aZA). 

Substitution of this and (19) into equation (8) produces a displacement which is ident- 
ical to Smith’s result from perturbation theory. From this result Smith found that 
vertical streamlines first occur when ZA = 1.47, which compares reasonably well with 
the value of 1-34 from the fully nonlinear solution. 

For our second example we show the solutions for an isolated symmetric bell-shaped 
mountain, the ‘Witch of Agnesi’, used in several classic mountain wave studies (see, 
for example, AIaka 1960), with a terrain profile given by 

h(x) = A/[ 1 + ( x / ~ ) ~ ] .  (23) 

Here A is again the mountain height and a is a characteristic length scale, the distance 
in which the height drops by half on either side of the peak. For this case, the linear 
approximation to f is readily found to be 

fL(4 = -A(x/a)/P + (x/a)”- (24) 

Figure 3 shows nonlinear solutions for f(x), again normalized by A. As in the sinusoidal 
case - f increases everywhere from the linear profile, corresponding to an increase in 
surface winds everywhere, but increases most strongly just to the lee of the mountain- 
top. 
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FIGURE 3. Similar to figure 1 but for the bell-shaped mountain, h(z) = A / [  1 + ( ~ / a ) ~ ] .  

Figure 4 shows streamlines of the nonlinear solution (dashed) a t  a moderately large 
amplitude, ZA = 0.74, compared with those for two different linearized solutions and 
with the steady state result of a time-dependent numerical simulation starting from an 
initially unperturbed state. The first linear solution, shown by the solid streamlines in 
figure 4 ( a ) ,  is not the solution of Long’s equation, but that of a similar equation 
written with Z as the vertical co-ordinate. With the lower boundary conditions set 
(correctly) as S(x, 0) = h(x) and the radiation condition applied in its linearized form, 
the solution is 

6(x, Z) = h cos E +fL sin I?. ( 2 5 )  

The streamlines depicted are those which would be produced by uniform vertical 
amplification of a small amplitude mountain and the streamlines over it. They corre- 
spond to probably the most common version of a linearized wave solution, but have the 
disadvantage that the wind speed is not proportional to the separation of streamlines. 
The streamlines, in fact, cross when ZA = I .  It should be noted that Long’s equation is 
not linear when written in x, Z co-ordinates, but becomes 

The solution shown by the solid streamlines on figure 4 ( b )  is obtained from Long’s 
equation with the correct nonlinear lower boundary condition but with a linearized 
radiation condition. The displacement height, prescribed as a function of z ,  is for this 
case 

(26) 

This solution differs from the nonlinear solution (8) only by the difference between f 
and fL. By comparison to  the previously depicted linear solution, the streamlines for 

6 = h cos Z(z - h)  + fL sinZ(z - h).  



250 D. K .  Lilly and J .  B. Klemp 

3s 

2n 

k? 

s 

0 
3r  

2 s  

.c! 

A 

0 
3 r  

2r 

.c! 

1T 

0 

- - _  r - _  

t 
- 2  0 2 

xla 

FIUKRE 4. Streamlines for the nonlinear solution over a bell-shaped mountain of amplitude 
A = 0.74 (dashed), compared with (solid) streamlines for: (a) a small amplitude linear solution 
amplified to match the above mountain height ; (a) a solution of Long's equation with a linearized 
radiation condition; ( c )  the steady state result of a nonlinear time-dependent simulation. 
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this case are qualitatively more similar to those of the fully nonlinear flow, showing 
strong steepening a t  the right places. Also they never cross each other and the velocity 
is always inversely proportional to their spacing. The maximum perturbation 
amplitude of the velocity components is, however, somewhat smaller than that for the 
fully nonlinear case, and the turnover point occurs at IA = 1 instead of the correct 
value 1A = 0.85, as first deduced by Miles & Huppert (1969), 

The dashed curve in figure 4(c) is the result of a numerical simulation we carried 
out to show the relationship of the Long’s equation solutions to those resulting from 
the solutions of initial value problems. The methods used have been described in detail 
by Klemp & Lilly (1978, see 992,3). A thermodynamic variable is used as the vertical 
co-ordinate, one isoline of which is then required to follow the terrain. For comparison 
with the steady state solution an incompressible formulation is used, for which the 
relevant thermodynamic variable is the specific volume a. Klemp & Lilly’s equations 
of one-dimensional horizontal motion, continuity, and hydrostatic balance (equation 
(43)) may then be written in a co-ordinates in the form 

where F is a viscous drag term. The terrain height is specified at a = ao, which allows 
(az laa )  to be integrated upward to give z(x, a,  t ) .  Determination of the pressure field 
requires an upper boundary condition. Since we know of no numerically stable way to 
specify a radiation condition, we apply a rigid-lid condition at the top but also incor- 
porate a viscous damping term in (27), i.e. 

F = va2u/ax2, (30) 

where v is specified as an increasing function of height in the upper portion of the 
domain. The optimal specification of this term is important to the results, as discussed 
in some detail by Klemp & Lilly. For the solutions presented here v is given by 

v = vTsin2 -- (; :I:) ’ 

where vT = 5aU,  and aT and a, correspond to height of lz  = 7 7 ~  and lz = 3n, re- 
spectively, in the undisturbed flow. Thus the damping layer is two vertical wavelengths 
deep. 

Equations (27)-(29) are numerically formulated using finite intervals of x, a, and t ,  
and applying centred second-order finite difference algorithms. The initial condition 
chosen is generally one of only horizontal motion, with a specified profile of u(a) and 
z(a). In  order to avoid large transients the terrain profile is initialized with zero ampli- 
tude and required to grow at a constant rate until it attains the desired amplitude. 
Proper formulation of the upstream and downstream condition to avoid instabilities, 
reflexion, and uncontrolled drifting is important also, and is described in detail by 
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FIGURE 5. Similar to figure 2 for the bell-shaped mountain at  the overturning amplitude 
A = 0 . 8 5 U I N .  

Klemp & Lilly. For the present result we integrated over the region \z/u1 < 48, 
lz < 7n, with a mesh spacing of 0.1 a in the horizontal and an a increment equivalent 
t o  n/81 in z. 

Comparison of the two sets of streamlines in figure 4(c) shows that they are much 
closer together than are either to the streamlines for the linearized equations, so that 
the nonlinear radiation condition leads to apparently superior results. The differences 
between the Long’s equation and initial value solutions are not quite negligible, 
however. We believe them to be mainly due to inadequacies of the numerical model, 
especially the inability of the upper viscous layer to completely simulate a radiation 
condition. Klemp & Lilly show that the optimal design of that layer depends on the 
horizontal wavelength content of the propagating modes. As the mountain amplitude 
increases, the waves become relatively richer in short wavelength components, whose 
greater-vertical group velocities allow them to pass through the viscous layer and 
reflect off the upper boundary with less attenuation. 

Figure 5 shows streamlines for the fulIy nonlinear solution a t  overturning amplitude, 
ZA = 0.85. The first vertical streamline occurs a little downstream of the mountain 
top a t  lz  = $n. Strong steepening is mostly confined to the flow over the lee side of the 
mountain. This feature will be compared with the flow structure over asymmetric 
mountains. 

The third, and in some respect most interesting case to be considered is obtained by 
using the f L  function of equation (24) for the terrain profile, thus producing for A > 0 
an asymmetric mountain with a sharp descent near x = 0 and a more gradual ascent 
fur Ix/al 9 1, with the reverse for A < 0. For the linear case, the solution will be 
identical to that of the bell-shaped mountain but displaced upward or downward by 4 
vertical wavelength. Solutions for f are shown in figure 6 and the streamline pattern at 
large amplitudes (in this case the value IA = 0.85 a t  which overturning first occurs 
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FIGURE 6 .  Similar to figure 1 for the asymmetric mountain, h ( x )  = -A(x/a)/[l+ ( ~ / n ) ~ ]  
Positive values of A correspond to sharp do~vvrislope and negative values to  sharp upslope. 
Overturning occurs first at A = 0.68 U/h7 and A = - 1.97 U / N .  

over the symmetric mountain) are shown on figures 7 and 8. The important feature is 
the difference between sharply rising and descending mountain slopes. For small 
amplitude the solutions are completely reversible with reversed mountain slope, but 
as the terrain amplitude grows the amplitude o f f  (and of the surface wind speed 
disturbance) grows substantially faster than linearly for a sharply descending moun- 
tain, and substantially slower for a sharp ascent. This behaviour and some of the more 
subtle phase changes are similar to the changes in f observed on the upstream and 
downstream sides of the sinusoidal and bell-shaped mountains. If the direction of the 
mean flow were reversed, the asymmetric mountain shapes would, of course, reverse 
their roles. 

On figure 9 we show the streamlines for the ascending mountain a t  its overturning 
amplitude. Here the flow bears some resemblance to ‘blocking’, but with a limited 
upstream extent. For larger amplitudes it separates from the mountain. 

These results confirm, extend and explain those obtained by Raymond (1972) who 
showed in one case that, a steep lee slope produced a stronger response than a steep 
windward slope. Smith also showed results for asymmetric mountain shapes, with 
similar tendencies to those shown here. Smith interpreted his results as indicating 
superposition of the first-order nonlinear wave steepening on the lee side of a symmetric 
mountain onto the linear steepening produced by the mountain profile itself. 

We offer a slightly more complete, though mainly geometric, explanation for the 
effects of mountain asymmetry on wave amplitude. The key is the recognition, from 
Smith’s analysis and our figures 2 and 6, that  nonlinear streamline steepening always 
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FIGURE 7. Similar to figure 2 but for the sharply descending asymmetric mountain, with 
A = 0.85 U I N ,  the overturning amplitude for the bell-shaped mountain profile. 

FIGURE 8. 
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Similar to figure 7 but for the sharply ascending mountain, with A = 0 . 8 5 U / N .  

occurs in a sharply upsloping flow. At the level where this is maximized (one-half 
vertical wavelength up for the sinusoidal mountain, three-fourths for the bell-shape) 
the displacements and potential energies are maximized and the horizontal velocity 
perturbations and kinetic energies minimized. Converse results hold one-half vertical 
wavelength above and below this level. For each of the solutions presented, for example 
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FIGURE 9. Similar to figure 8 but for the overturning amplitude A = - 1.97 U / N .  

figure 5,  a displaced but otherwise identical flow pattern could be produced if the 
mountain shape were replaced by that of any streamline above it. If the streamline 
were the one where the displacements are minimized, then everywhere above i t  the 
flow would have a greater displacement amplitude and smaller velocity amplitude 
than those a t  the mountain surface. I n  effect that  is what we have done by choosing the 
sharp downslope profile of figure 7 to  be identical to the linear case streamline one- 
fourth wavelength above the surface of the bell-shaped mountain. On the other hand 
by choosing a sharp upsloping mountain profile of a given amplitude, we minimize the 
displacements everywhere above it,  and the velocity amplitude along it, thus mini- 
mizing total energy and, as we will show, wave drag. 

Our results qualitatively resemble the observed behaviour of air flow over large 
mountains. I n  the U.S. and Canada the mean wind direction at the altitudes of higher 
mountains is from the west. The strongest mountain wave effects, including severe 
downslope winds, seem most often to  be observed in the lee of mountain ranges with 
gradual rises on their western sides and rapid descents to the east, such as the central 
Colorado Rockies west of Denver (Klemp & Lilly 1975), the Canadian Rockies west of 
Calgary (Lester 1976), and parts of the Sierra Nevada (Alaka 1960). On the other hand, 
the Wasatch Mountains near Salt Lake City have the opposite configuration. Here 
strong mountain waves and downslope winds occur only on the western slopes during 
the occasional periods when the mean flow is from the east (Harrison 1965). For com- 
parison, the maximum surface wind speed for the bell-shaped mountain of figure 5 is 
1.72 times the mean flow, while over the sharply descending mountain of figure 7 i t  is 
2-36 times the mean flow. For the sharply ascending mountain of figure 8 i t  is every- 
where less than the mean flow. 

Probably the most important quantitative measure of mountain wave intensity, 
both for its effects on local meteorology and on larger scales of motion, is the exchange 
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of momentum between the atmosphere and the sloping lower boundary. The wave 
drag is the force which the earth exerts on the atmosphere through differential 
pressures on the windward and leeward slopes, and is given by the integral along the 
surface of ph’,  where h‘ = dh/dx.  Large values of wave drag are associated with strong 
mountain wave effects, including wave-induced turbulence and downslope wind- 
storms (Klemp & Lilly 1975). Since wave drag propagates vertically as wave momen- 
tum flux, the exchange may actually occur a t  some upper level where turbulent 
breakdown occurs, thus causing a removal of momentum from the atmospheric general 
circulation (Bretherton 1969; Lilly 1972). 

To obtain the wave drag, we must first evaluate the surface pressure. From equation 
(1)  in the steady state and (5)-(6) a Bernoulli equation holds, so that at z = h, 

(31) p = ( -+Po)  (US+ N2h2) = - (+PO U2) [(l - Lyy+ 12h21. 

Thus the wave drag of the earth on the atmosphere is 

where we assume that the surface terrain heights far upstream and downstream of the 
mountain are equal. In the case of periodic terrain we will calculate the integral only 
over a single wave period, however. The first term of the integral is identical in form to 
the result obtained from the usual linear theory, except for the difference between f 
and fL. This term is always positive if U > 0 (Drazin & Su 1975). The second is a 
product of the present analysis, significant only for large amplitude terrain, and may 
vary in sign, depending on the mountain shape. 

Figure 10 shows the wave drag, plotted as the ratio of its value to that of the linear 
solution, for various terrain shapes and for amplitudes up to and above the overturning 
amplitude, shown as a x on each curve. For each of the mountain profiles the drag for 
the linear lower boundary condition is 

DL = -Po U2 1 “  LyLh’dx = 4ponlA2U2. (33) 
J -to 

From these results we see the strong effects of mountain asymmetry in the nonlinear 
solutions. For the symmetric and sinusoidal terrain the wave drag is mainly 
proportional to the square of the mountain height, with 4th- and higher-order terms be- 
coming significant only for amplitudes close to overturning. The drag of the asymmetric 
mountains has a large cubic term, which is not present in either the symmetric non- 
linear or asymmetric linear solutions. On the other hand, if one averages the wave drag 
from the upslope and downslope asymmetric mountains, the resulting drag curve is 
similar to (though larger than) that for a symmetric mountain. From this viewpoint 
also one can interpret the flow over the asymmetric mountain with sharp downslope as 
qualitatively similar to that over the downslope side of a symmetric mountain, and 
similarly for the sharp upslope case. This is not inconsistent with Smith’s interpret- 
ation of the additive effects of nonlinear wave steepening and mountain asymmetry, 
but it shows the importance of the tendency for most vertical motion to occur on the 
downslope side of the mountain in highly nonlinear flow. 

We have also plotted, as dashed curves, the values obtained from use of the non- 
linear lower boundary condition and the linearized radiation condition, using f ( x )  = f L  
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FIGURE 10. Wave drag D plotted as the ratio of its value to that of the linear solution DL for 
various mountain shapes and amplitudes. The solid curves are for the complete solution while the 
dashed curves use the linearized radiation condition f = f ~ .  Overturning occurs at  the points 
marked x .  

in equation (32). These results tend t o  be consistent with the impressions obtained 
from inspection of the f profile and the flow streamlines. The drag is generally less than 
that obtained from the correct radiation condition but the principal elements of flow 
asymmetry and periodic wave steepening are captured. 

4. The flow over a step mountain 
One of the more striking conclusions of linear mountain wave theory is the predic- 

tion for flow over a one-sided or step mountain, that  is one for which the displacement 
never returns to zero on the lee side. As pointed out by Bretherton (1969) the steady 
state horizontal velocity function fL(x) is singular, i.e. infinite, for this case. The 
singularity is logarithmic in nature and can be removed in several ways. Let us 
suppose, for example, that  the mountain shape is given by 

h(x) = A [ @ +  tan-l(x/a)]. 

If an initial value problem is considered, with displacement starting from zero every- 
where except along the surface, then the amplitude of f L  increases like In ( U t l a ) ,  and 
thus remains finite for all finite time. If a vertical viscosity coefficient v is added to the 
equations, then the steady state amplitude of f L  becomes proportional to In (aU/v ) .  
Horizontal viscous terms do not, however, remove the singularity. If rotational effects 
are included the downstream velocity is bounded but the cross-stream component, 
and therefore the total kinetic energy, still approaches logarithmic infinity. Of course 
the fact that  all mountains are of limited lateral extent and that the singularity only 
exists for line-symmetric ranges reduces the physical interest considerably. Smith 
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(1979) points out that a similar problem occurs in aerodynamic theory for an infinitely 
long and wide airfoil. 

Despite the ultimately non-physical nature of the singularity we felt that it  would 
be of some interest to explore its nonlinear aspects, by determining from the Long's 
equation model whether the singularity remains present for finite amplitude moun- 
tains. Given the fact that the wave energy must ultimately come from that of the mean 
flow, it might seem unlikely that this energy would increase indefinitely with moun- 
tain width. To investigate the question we used a two-scale mountain, developed by 
superimposing the left half of a wide bell-shaped mountain on the right half of a narrow 
one. or vice versa. i.e. 

I A/( l  +x2/a2) for x > 0, 
A/(1 +x2/b2) for x < 0. 

h(x)  = (34) 

This mountain has a second-order discontinuity at x = 0. An alternative and cleaner 
shape could be obtained by superimposing two arctan mountains of opposite sign, 
separated by a variable distance to form a table mountain, but this turned out to be 
less convenient numerically. For the above mountain the linear f function is given by 

The terms in square brackets do not appear for the normal bell-shaped mountain with 
a = b. They are responsible for the ultimate singularity, since they produce the result 
fL(0) = (A/m) In (a/b). A similar result holds for the table mountain. 

We have obtained complete nonlinear solutions, using equation (15), for b/a ranging 
between 10-4 and lo4. In one set of computations, the mountain amplitude was fixed a t  
a value such that f could be assumed to be in the linear range for a = b but would 
reach nonlinear amplitude for large b/a. In a second set, we prescribed the mountain 
amplitude as a function of b/a such that the maximum value of fL approaches a 
constant as the ratio becomes very large or very small. In  order to evaluate the integral 
accurately we carried out a polynomial transformation of the horizontal dimension, so 
that adequate numerical resolution was present throughout the domain wit,hout an 
unacceptably large number of integration points at  large distances from the origin. 

Figure 1 1  shows the maximum values of f(x) and of fL(x) for the case with small 
fixed mountain amplitude, ZA = 0.1. The abscissa is in logarithmic coordinates, so 
that a t  large values of b/a the fL value lies along a straight line. The nonlinear solution 
is everywhere greater than the linear one, and reaches the turnover point for b/a - lo6. 
This increase is due to the sharply descending profile downstream, similar to the results 
for the asymmetric case shown in $9 .  For b/a < 1 the nonlinear solution would be 
everywhere smaller than the linear case. 

Table 1 shows f/fL (maximum values) and the ratio of the wave drags, DID,, for the 
second set of computations. For these the mountain amplitude was prescribed such 
that ZA [in + In (b/a)] = 2, for which the maximum value of fL approaches a constant 
for large values of Iln (b/a)l .  The amplitude behaviour is such that the solutions are 
effectively more nonlinear a t  a = b than elsewhere, so that the tabulated ratio initially 
decreases in both directions. As b/a or a/b become very large the ratios obviously 
converge, however, being greater than unity for the sharply descending mountain and 
smaller for the case of sharp ascent. 
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FIGURE 11. Maximum value of If for the two-scale mountain solutions as a function of the ratio 
of the upstream to downstream scales. Nonlinear solutions are solid, linear dashed. 

a l b  IA VL,, f r n E J f L m b x  MlML 
1 0 - 4  0.079 0.250 0.883 0.899 
10-3 0.102 0.250 0.881 0.902 
10-2 0.146 0.261 0.877 0.910 
10-1 0-254 0.261 0.858 0.931 

1 1 -000 0.500 1-873 1.279 
10 0.254 0.261 1.203 1.122 
1 0 2  0.146 0.251 1.162 1.126 
1 0 3  0.102 0.250 1.149 1-130 
1 0 4  0.079 0.250 1.145 1.132 

TABLE 1. Maximum surface wind functions and momentum fluxes for two-scale mountain 
solutions. 

These results show that nonlinearity does not qualitatively change the nature of the 
singularity found for linear flow, and quantitatively changes i t  only in the same way 
as i t  does the solutions for bounded asymmetric mountains. Of course once over- 
turning instability occurs a new set of physical factors enters. We expect that a 
realistic numerical simulation of flow over a mountain with large b/a and amplitude 
sufficient for overturning would develop some form of blocking after the instability 
occurred. 
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5. Conclusions 
In earlier work (Klemp & Lilly 1975, 1978) we have shown how the atmospheric 

response to topographic forcing a t  hydrostatic scales is affected by the details of the 
atmospheric flow and thermal profiles. The above results indicate how and why that 
response tends to be a strong function of the shape, as well as the amplitude, of the 
terrain. In  particular, they show that terrain with a gradual upslope and steep down- 
slope profile is optimal for producing intense waves, strong surface winds, and large 
wave drag, which is explainable as a direct consequence of the geometry of nonlinear 
wave steepening. It is evident that the above methods can be readily applied to other 
mountain shapes. Extension to more general flow and stability profiles is of doubtful 
practicability, however, since Long’s equation becomes nonlinear in most cases. It 
appears possible to obtain solutions for two- or three-layered atmospheres, with 
stability discontinuities between the layers. The interfacial boundary conditions lead 
to transcendental equations, however, requiring additional iterative numerical 
treatments. 

Our method of solution allows for separate consideration of the effects of nonlinearity 
in both the lower and upper boundary conditions. We find that the qualitative nature 
of the flow, and especially its asymmetries, depends principally on satisfaction of the 
nonlinear lower boundary condition. Use of the linearized radiation condition permits 
easy determination of solutions which retain the correct qualitative properties. 

We gratefully acknowledge the key contributions to this pa.per by George Chimonas, 
who pointed out the merit of using the nonlinear radiation condition, and by Philip 
Drazin, who encouraged formulation of a proof of its validity. The National Center for 
Atmospheric Research is sponsored by the National Science Foundation. 
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